Workforce Optimization

Naji Mohamed Ali
nationalgrid

About National Grid

We are one of the largest investor-owned energy companies in the US - serving more than $\mathbf{2 0}$ million people throughout New York and Massachusetts.

Serving 20 million people
 Nearly 18,000 employees

- 3.4 million gas customers
- 2.9 million electric customers

Customers by region:

2.2 million

UNY 2.2 million LI 0.6 million NYC 1.3 million

Contents page

$\mathbf{0 1}$	Background	03
$\mathbf{0 2}$	Problem	05
$\mathbf{0 3}$	Solution	08
$\mathbf{0 4}$	Input walkthrough	12
$\mathbf{0 5}$	Input validity	18
$\mathbf{0 6}$	Output	22
$\mathbf{0 7}$	Benefits \& Future steps	24
$\mathbf{0 8}$	Appendix	28

nationalgrid

01

Background

nationalgrid

Background

Problem

 nationalgrid
Problem

Project requirements

Project	Location	Electrician	Welder
Project A	Waltham	1	1
Project B	Worcester	2	0

Final assignment

Project	Worker	Job group	Cost (\$)
Project A	Michael Wilson	Electrician	12
Peter Parker	Welder	6	
Project B	William Martin	Electrician	9
Bruce Wayne	Electrician	8	

Total cost: \$ 35

Available workers

Worker	Homebase	Job description
John Doe	N. Andover	Welder
Peter Parker	Waltham	Welder
Mark Anderson	Lowell	Welder
Bruce Wayne	Reading	Electrician 2/c
Michael Wilson	Reading	Electrician 1/c
William Martin	Beverly	Electrician 2/c
Robert Moore	Malden	Electrician 1/c

Can we improve crew formation?

Would it make sense to optimize on reimbursement cost?

Can we use mathematical optimization?

03

Solution

 nationalgrid
Mathematical Optimization

Yes, we can!

Project A

Mathematical Optimization - Linear sum assignment

Task	Electrician 2/c	Electrician 2/c	Electrician $\mathbf{1 / c}$	Welder
Project A Electrician	$\$ 5$	$\$ 9$	$\$ 3$	-
Project A Welder	-	-	-	$\$ 6$
Project B Electrician	$\$ 6$	$\$ 10$	$\$ 12$	-
Project B Electrician	$\$ 8$	$\$ 7$	$\$ 8$	-

Manual assignment
Optimized assignment
Cost: \$35
Cost: \$22

Objective: Assign every employee a distinct task such that total cost is minimal, and every task gets exactly one worker and vice versa.

Python package: OR-Tools

Mathematical Optimization - Linear sum assignment

Context:

- For optimization formulation we only consider 'available' workers.
- A 'job group' consists of multiple job descriptions which are interchangeable.
- A project can have requirements for different job groups with multiple workers required for a job group.
- We define a 'task' to be a single job group requirement within a project.
- If a project requires 2 electricians and a welder, then that project has 3 tasks.

Mathematical Optimization - Linear sum assignment

Notation:

$$
\begin{gathered}
x_{w t}=\left\{\begin{array}{c}
1 \text { if worker } \boldsymbol{w} \text { is assigned to task } \boldsymbol{t}, \\
0 \text { otherwise }
\end{array}\right. \\
c_{w t}: \text { Cost if worker } w \text { is assigned to task } \boldsymbol{t} .
\end{gathered}
$$

Therefore, the optimization problem is:

$$
\begin{aligned}
& \text { Minimize } \\
& \qquad \sum_{w, t} c_{w t} x_{w t}
\end{aligned}
$$

Mathematical Optimization - Linear sum assignment

Constraint 1:
A task \boldsymbol{t} must only be assigned to a single worker \boldsymbol{w}
For every task \boldsymbol{t} :

$$
\sum_{w} x_{w t}=1
$$

Mathematical Optimization - Linear sum assignment

Constraint 2:
A worker w can only perform one task tat a time.
In other words, for every worker w, we have:

$$
\sum_{t} x_{w t}=1
$$

Solution - example

Manual vs optimized assignment

```
W1 to P2 (round-trip) - $135
W2 to P1 (round-trip) - $135
Total - $270
W1 to P1 (round-trip) - $23
W2 to P2 (round-trip) - $23
Total - $46
```


04
 Input walkthrough

nationalgrid

Input template

H		: \times	\checkmark							
4	A		B				C	D	E	F
1	Project Name		Project Address			Constr	tion specialist	Grade 1 Electrician	Grade 1 Electrician w/c	Welder
2	NG substation 1		1234 Data Dr, Waltham, MA				2	1	0	1
3	NG substation 2		12th Abc st, North Andover, MA				0	2	2	0
4	NG substation 3		170 Data Dr. Waltham. MA				1	100	1	1
	+	Job_descriptions		Groupings	Project_requirements		Worker_master	Compatibility_output	\oplus	

Job description

Job titles used across organization

A B C 1 Job Descriptions 2 Construction specialist 3 Grade 1 Electrician 4 Grade 1 Electrician w/C 5 Welder 6
Job_descriptions

Grouping

A		B	C	
1	Group	Member 1	Member 2	
2	Electrician		Grade 1 Electrician	Grade 1 Electrician w/c
- Job_descriptions	Groupings	Project_requirements	Worker_master	Compatibility_output

Allows the job titles to be interchangeable

Project Requirements

Job titles auto-populated from job descriptions sheet

4	A		B			C	D	E	F
1	Project Name	Project Address			Construction specialist		Grade 1 Electrician	Grade 1 Electrician w/c	Welder
2	NG substation 1	1234 Data Dr, Waltham, MA				2	1	0	1
3	NG substation 2	12th Abc st, North Andover, MA				0	2	2	0
4	NG substation 3	170 Data Dr, Waltham, MA				1	100	1	1
5									
4	Job_des	criptions	Groupings	Project_requ	ements	Worker_master	Compatibility_output	\oplus	

Worker sheet

05

Input validity

nationalgrid

Valid Input

Excel customizations via VB script
nationalgrid

Invalid Input

H4	- $1 \times x$	$\checkmark f_{x}$					
4	A	B	C	D	E	F	G
1	Project Name	Project Address	Construction specialist	Grade 1 Electrician	Grade 1 Electrician w/c	Welder	
2	NG substation 1	1234 Data Dr, Waltham, MA	2	1	0	1	
3	NG substation 2	12th Abc st, North Andover, MA	0	2	2	0	
4	NG substation 3	170 Data Dr, Waltham, MA	1	100	1	1	
5							
6		Microsoft Excel Unequal project requirements and workers or invalid project name					
7							
8							
9							
10							
11							
12							
13							

Compatibility sheet - why is it invalid?

06

Output

 nationalgrid
Output

4	A	B	C		E	F	G
1	Personnel Number	First Name	Last Name	Job Group	Current Project	Current Cost	
2	3	Jane	Doe	Construction specialist	NG substation 3	68	
3	10	Michael	Wilson	Electrician	NG substation 1	79	
4	1	John	Doe	Construction specialist	NG substation 2	5	
5	2	Mark	Wayne	Construction specialist	NG substation 2	79	
6	5	David	Smith	Electrician	NG substation 1	95	
7	6	Benjamin	Johnson	Electrician	NG substation 2	260	
8	7	Thomas	Jones	Electrician	NG substation 3	40	
9	8	James	Davis	Electrician	NG substation 3	5	
10	12	Micahel	Carter	Electrician	NG substation 1	55	
11	13	Robert	Moore	Welder	NG substation 2	55	
12	14	Matthew	Parker	Welder	NG substation 2	40	
13						$\mathbf{7 8 1}$	

Current
Assignment

		H	1
	1	Optimal Project	Optimal Cost
	2	NG substation 3	68
	3	NG substation 1	79
	4	NG substation 1	95
	5	NG substation 1	5
Optimal Assignment	6	NG substation 2	5
	7	NG substation 3	148
	8	NG substation 2	5
	9	NG substation 2	79
	10	NG substation 2	5
	11	NG substation 1	68
	12	NG substation 3	40
	13		597

07

Benefits \& Future steps

nationalgrid

Our method

Minimize cost

Immediate feedback on the feasibility
\star
Ability to mark an employee unavailable

Flexibility to make manual changes in the output with costs calculated at runtime

Benefits

- Potential cost savings of $\sim 20 \%$ on the per diem expenses
- Overall travel time reduced
- Improved safety
- Improved employee satisfaction

Achieving Success

- Working sessions with users
- Verify generated assignments are usable
- Analyze usability of provided features
- Identify areas for improvement to increase quality

08

Appendix

nationalgrid

Output

How do we update cost, duration and distance dynamically?

- Pre-calculated lookup table
- Nested Index Match formula

4	A	B	C	D	E
1	Personnel Number	NG substation 1_Construction specialist	NG substation 1_Electrician	NG substation 1_Welder	NG substation 2_Electrician
2	1	9500	-1	-1	-1
3	2	500	-1	-1	-1
4	3	7900	-1	-1	-1
5	5	-1	9500	-1	500
6	6	-1	14800	-1	26000
7	7	-1	5500	-1	500
8	8	-1 Invalid	500	-1	7900
9	9	-1 combinatio	14800	-1	26000
10	10	-1	7900	-1	5500
11	12	-1	5500	-1	500
12	13	-1	-1	6800	-1
13	14	-1	-1	6800	-1
14					

Lookup table for cost (in cents)

Solution - Optimized assignment

Total cost: \$ 410

Optimized assignment*

Project	Worker	Job	Cost (\$)
	David Price	Electrician	18
Peter Parker	Welder	45	
Project A	Neil Vincent	Construction Specialist	57
Andy Jordan	Electrician	16	

Total cost: \$ 136

* The above scenario is using a toy data

Input template

Validity check and remote save

Input sheets

nationalgrid

