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About National Grid

Serving 20 million people

5.3M Residential  +  600k Commercial  

= 5.9 million customer accounts

Residential & Commercial 

customers by region:

We are one of the largest investor-owned energy 

companies in the US — serving more than 20 million 

people throughout New York and Massachusetts.

UNY  1.7 million

LI       0.6 million 

NYC  1.3 million
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Cathodic Pipe Protection (CPP) – a brief primer

Basic Idea:

• Cathodic Protection is a method of keeping steel from 

corroding

• An electrical connection in moist soil to a buried 

“sacrificial anode” moves electrons allowing the anode to 

be sacrificed and suffer the damage instead of the pipe

What do we need to know for this discussion?

• National Grid has thousands of test points along its network of gas pipelines in 

Massachusetts to monitor the voltage difference between Pipe and Soil 

• When a test point reading, most inspected annually, has a difference less than -0.85 

Volts, intervention must be taken

https://www.sciencedirect.com/topics/engineering/sacrificial-anode
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Risk: Newly paved roads in Massachusetts are under “guarantee” for 5 years, which 

prohibits digging. 

➢ National Grid cannot address CPP compliance issues on guaranteed streets 

until the guarantee period is over. 

Solution: Use machine learning to estimate the probability that test points will have 

a failed inspection during the compliance period 

➢ Allows National Grid to react proactively to paving notices 

➢ Additional Use Case: Inform CPP maintenance prioritization

Business Case: Getting ahead of CPP compliance Issues



Corrosion Data
Exploration and Initial Modelling 
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• Corrosion Data

• Summary and basics of the structure

• First look at our critical variable

• Other key variables

• Model Graveyard

• Original Plans

• Regression & Survival Analysis

• Pivot
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A summary of the data

• Our dataset spans from January 2000 through September 2022

• Nearly 30,000 Inspections are carried out each year

• Each test point has information about its location, the section of pipe to 

which it belongs, maintenance history, inspection notes, and many more 

variables

• Our critical data point is Pipe-to-Soil voltage reading (recall -0.85 threshold)
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Pipeline sections and test points
• Test Points for the Cathodic 

Protection Program are grouped into 

Sections

• Sections are defined by their Type 

and location (each defined within a 

single City/Town)

• Different sections have different 

lengths, diameters, etc. due to a 

variety of factors such as service area 

and when the pipe was installed

• More than 20,000 Sections in the 

dataset (~5,000 Sections with Annual 

Test Points)

• More than 90,000 Test Points 

(~22,000 Annual Test Points)
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• Even at the Section Level, 

the majority have not had a 

failure in the observation 

period

The majority of test points have never failed an inspection

• Over 60% of Individual 

Test Points have never 

failed in ~22 years of data
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Test point readings can exhibit stochastic behavior

• 4 Test Points chosen at random from each category to illustrate patterns

• Pipe to Soil Reading values and variance are both noisy

• Maintenance can play a role, but does not always

Test Points with No Failures Test Points with At Least One Failure
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Readings prior to failure are hard to distinguish from normal

• The distribution of Test Point 

readings immediately preceding a 

failure is more concentrated around 

the threshold of -0.85

• There is substantial overlap, 

however, with the distribution of all 

Passing Readings
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Adding anodes moves readings away from threshold

• For Test Points where 

Anodes were added via 

Maintenance, readings were 

more negative after the work 

was complete

• Different patterns emerge for 

each of the many 

maintenance orders 

performed by teams in the 

field
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Location Matters: Failure Percentage of All Readings by Town

20%

18%

16%

14%

12%

10%

8%

6%

• Test Points with the highest 

rates of failure are close to 

urban and industrial centers

• Possible factors per SMEs:

• Age of Pipe

• Pipeline Diameter

• Proximity to the T*

• Soil Moisture

• …

*Boston’s rapid transit system
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Original project goals

• To support a wide-variety of initiatives and provide the most flexible outputs, 

the original project plan was to produce continuous outputs either by:

• Predicting specific reading outputs over time

• Building expected-time-to-fail metrics for each test point
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• Limited history by test point, previous 

reading has limited predictive power

• Few variables exhibit any correlation with 

failed readings

• Impossible to support precision for 

estimates near -0.85

• Many test points unobserved for years, 

interval censoring approach misses out on 

81% of data as they are Right Censored

• Hazard functions exhibit multi-modal 

behavior that suggest other mechanisms at 

play in terms of time-to-failure not captured 

by model
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Several modeling approaches were considered and 

eventually deemed unfit:

Efforts to use regression techniques to predict specific Pipe to Soil 

readings in the future failed to meet any standard of accuracy.

Survival Analysis, particularly a Proportional Hazards approach, helped us 

identify some important variables. In the end, however, the outputs were 

not answering the specific questions our partners needed.

In the end, a classification approach presented the best path 

forward.  Our goal was to produce a 5-year probability of 

failure for every test point in the Massachusetts network

Choosing a Modeling Path



Model v1.0
Generating Probabilities

04
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Preparing the data

Classification target is whether a test point has at least 1 failure within 5 years 

• Take each test point reading as an event, capture relevant features

• Look 5 years ahead and see if that test point fails (Target, 1/0)

• This limits our dataset to readings taken before 2017

• Periodically test points are retired, so events without at least 2 readings in 

the following 5 years are removed

Our data are imbalanced

• Fewer than 1 out of 5 events in our dataset see a failure in the 5-year 

horizon

• Rebalancing and under sampling was considered to avoid over predicting 

0 (since a naïve model would achieve >80% accuracy) 
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Choosing the right numbers

Ensuring model adoption and usefulness requires optimizing for the 

metrics end users care the most about and providing them with outputs 

that are useful and intuitive.

Optimization

• Resources are limited but all test 

points require observation and 

maintenance

• Being late to a failure on a 

“guaranteed street” presents big risk

• f1 & Balanced Accuracy

Outputs

• Ranking is helpful, but how does #10 

compare to #20?

• Balancing proactive and reactive 

work orders along with other 

workstreams requires more context

• Probabilities of Failure
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Model Comparison

Model Accuracy
Balanced 

Accuracy
f1

Dummy 0.8230 0.5000 0.0000

Logistic 0.8410 0.5940 0.3203

Random Forest 0.8535 0.6369 0.4213

XGBoost 0.8530 0.6452 0.4378

Logistic 0.7401 0.6972 0.4616

Random Forest 0.8513 0.6213 0.3868

XGBoost 0.8530 0.6452 0.4378

Logistic 0.7402 0.6973 0.4617

Random Forest 0.7477 0.7368 0.5037

XGBoost 0.7406 0.7332 0.4962
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*Results above are averages from 5-fold Cross Validation
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Classification scores to probabilities

• The outputs from a classification 

algorithm look a lot like 

probabilities, but using them as 

such will skew your distribution

• This chart shows increasing 

deciles of under-sampled 

classification outcomes and 

compares them to observed 

failures

• All 3 approaches drastically 

overstate the likelihood of 

failure

5th decile:

Model avg ≈ 0.45

Actual avg ≈ 0.15



31

Classification scores to probabilities (cont.)

• To avoid over-stating probabilities, we 

calibrate the classification scores 

using Isotonic Regression

• Weighted least squares regression to 

transform (Isotonic merely refers to 

increasing mapping of scores to 

probabilities)

• The deciles in green show the 

calibrated values and actual results 

are far closer to unity (in blue)

Model Output
Calibrated

5th decile:

Model avg ≈ 0.44

Actual avg ≈ 0.44
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Classification scores to probabilities (cont.)

Dataset 5-Year Failure Percentage

Validation 18.0%

Training 17.8%

Test 17.4%

Classifier 41.0%

Calibrated Classifier Output 17.3%

• Without calibration, the failure rate for our test point population would be 

drastically overstated

• Calibrating the probabilities brings the cumulative forecast much closer to reality 

and provides more useful direction to those planning work and inspections
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Model correctly predicts 72% of failures

72%62%32%

15%

72%

0%

20%

40%

60%

80%

100%

Random Chance Model

Test Point Failures

Caught Missed

Performance on the Validation Set

Model estimates match observations: Test 

Points modelled as failing 70% of the time do

fail 70% of the time

0%

20%

40%

60%

80%

100%

Test Point Probability of Failure Ranges

Model Reliability

Model Observed



Current Status
Evaluating year one and next 

steps for the project
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Evaluating model performance after the first year

0%

20%

40%

60%

80%

100%

First 5-Year Reliability Results
(Nov 2018 - Oct 2023)

Model Average Actual Observed Unity

Full Period

• 18% of Test Points failed within 

the period overall, for the top 

100 risk-ranked test points 

71% failed

Calendar Year since kick-off

• Nearly 10% of failures in the first 

year of the program were in our 

top 1% of predicted Test Points

• Failed test points in Year 1 had a 

50% higher average probability 

of failure than typical Test Points
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Current Status

• Our partners in this project have begun utilizing the output to enhance their efforts to 

maintain compliance and prioritize work to support the Massachusetts gas service.

• “Proactive Maintenance” work orders submitted for the first time

• Improved relationships with cities and towns: Guarantee backlog (where we had been 

blocked from digging to address an issue) down 50% in the first 6 months of use

Next Steps

• Model evaluation over time

• Version 2 to explore other external datasets

• Recently kicked off similar effort in Upstate New York

Year one successes and next steps
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