

Cliff Rose & Sam Lockshin, Yes Energy Matt Hasvold, Black Hills Power

Agenda

- Intro to Power Market Data & Ways to Access It
- Example 1: An ERCOT Utility Using UI Tools to Make Decisions
- Example2: An ERCOT Utility using data tools to make decisions
- Example 3: Real World Workflows from Black Hills Energy

Utilities must leverage LOTS of data in various business decisions

Power Plant Operations Data

And Much More

Meter / Billing Data

Wholesale Power Market Data

alifornia ISO

CENACE

leso

Connecting Today. Powering Tomorrow.

Utilities Have Varying Levels of Value for Power Market Data

Example Utility A:

- IOU in an ISO Market
- Large Fleet of Plants Under Management

Leverages Power Market Data to:

- Understand Market Conditions for next few days
- Optimally Dispatch Plants
- Understand Congestion & Outages in their area
- Negotiate Long Term Power Buys & Sells
- Manage Congestion through FTR / ARR / CRRs

Example Utility B:

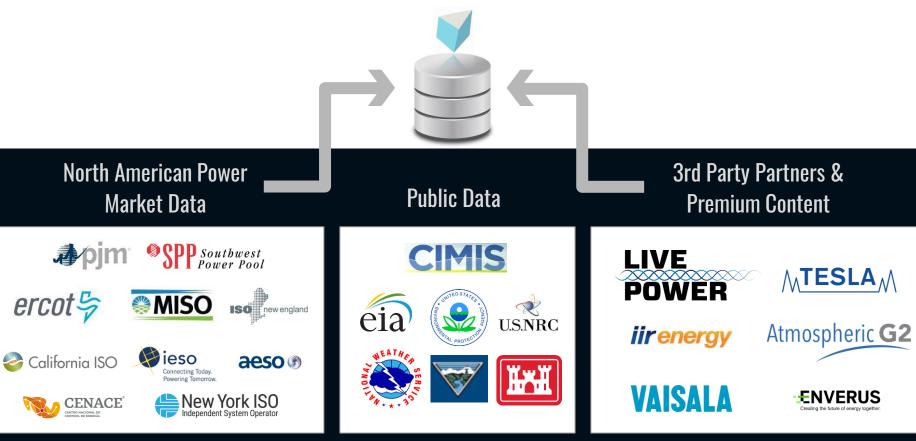
- Municipal Utility Outside an ISO Region
- No Plants under management

Leverages Power Market Data to:

 Occasionally buy & sell power from neighboring ISO

There's a lot of Power Market Data Out There

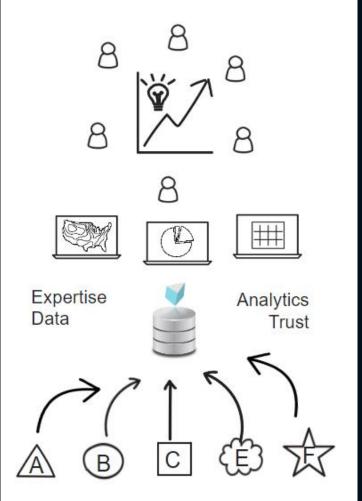
Much of it is publicly available, but not easy to access & analyze

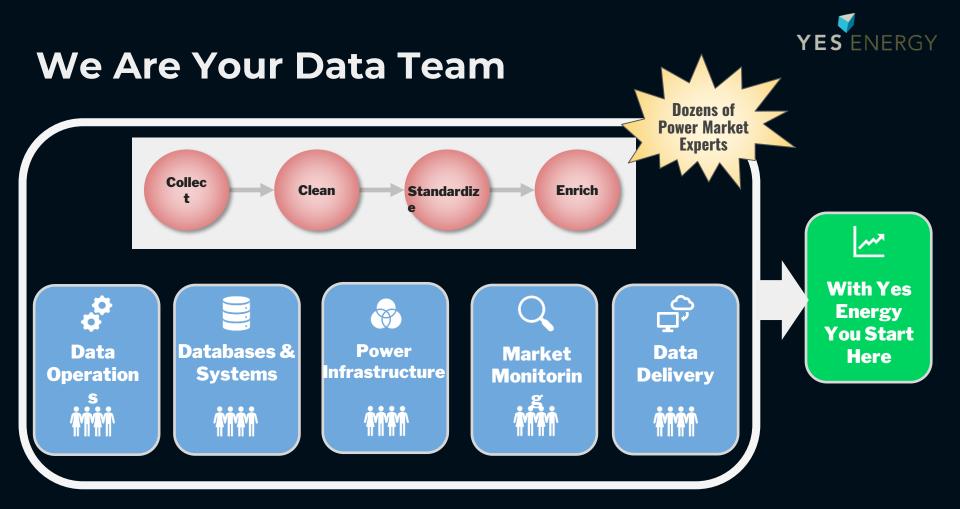

Binding Constraints Supplemental (xls)

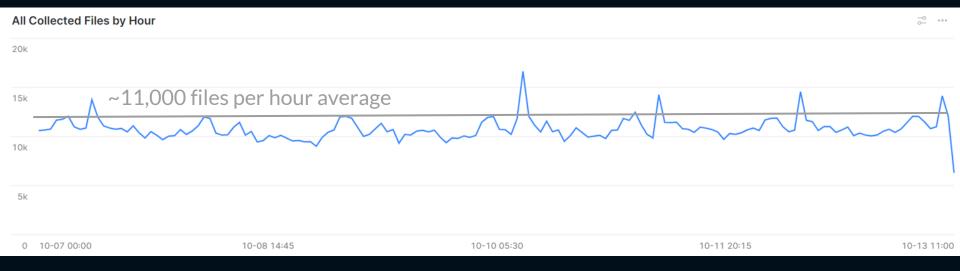
Showing 1-10 of 1017 documents

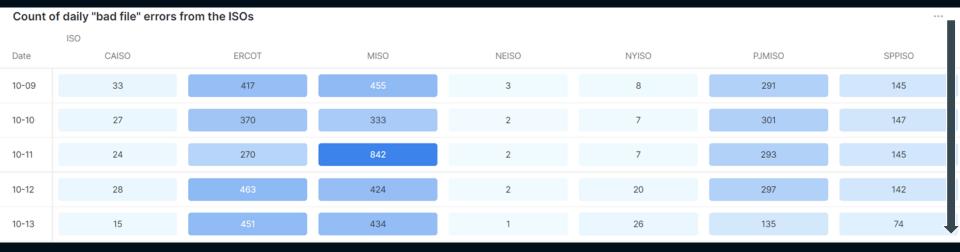

: 1 2 3 4 5 > ≫ 10 per page ∨

Friendly Name	Posted	Available Files	File	11	Published
LMPSELECTBUSNP6787_20221013_152014_csv	10/13/2022 3:20:18 F	PM zip	20221013_da_bcsf.xls		10/13/2022
LMPSELECTBUSNP6787_20221013_152014_xml	10/13/2022 3:20:18 F	PM zip	20221012_da_bcsf.xls		10/12/2022
LMPSELECTBUSNP6787_20221013_151514_csv	10/13/2022 3:15:18 F	PM zip	20221011_da_bcsf.xls		10/11/2022
LMPSELECTBUSNP6787_20221013_151514_xml	10/13/2022 3:15:18 F		20221010 da bcsfxls crein at your/the company's own risk. Accordingly, you/your com	เตล	10/10/2022
LMPSELECTBUSNP6787_20221013_151014_csv	10/13/2022 3·10·1;it	s use of the data in th	e Transmission Facilities Outage List, and neither DM nor any igns, agents, contractors, service providers or vendors shall be	wh	10/9/2022
LMPSELECTBUSNP6787_20221013_151014_xml	10/13/2022 3:10:11	/ you/your company as re nformation on file conte	lates to the use of the referenced information obtained from the ents available at www.pjm.com > Markets & Operations > PJM Tools	ie >	10/8/2022
LMPSELECTBUSNP6787_20221013_150514_csv		-ENERGIZED EQUIPMENT			10/7/2022
LMPSELECTBUSNP6787_20221013_150514_xml	10/13/2022 3:05:1+IT	TEM TICKET FACILITY	NAME		10/6/2022
LMPSELECTBUSNP6787_20221013_150017_csv	10/13/2022 3:00:2	1 Ø BRKR INDI	IANRI 230 KV INDIANRI 231 CB		10/5/2022
LMPSELECTBUSNP6787_20221013_150017_xml	10/13/2022 3:00:2	2 Ø CAP BARE	3ADOS 35 KV BARBADOS 20-2 CAP CAP		10/4/2022
LMPSELECTBUSNP6787_20221013_145513_csv	10/13/2022 2:55:11				
LMPSELECTBUSNP6787_20221013_145513_xml	10/13/2022 2:55:1				
LMPSELECTBUSNP6787_20221013_145013_csv	10/13/2022 2:50:1	5 0 CAP BARE	JADOS 35 KV BARBADOS 20-1 CAP CAP		
			IOWNI IS KV CALLOWNI 6-2 CAP		
		7 Ø CAP CALL	OWHI 13 KV CALLOWHI 8-1 CAP		
		8 Ø CAP CALL	OWHI 13 KV CALLOWHI 4-3 CAP		
		9 0 CAP CALL	.OWHI 13 KV CALLOWHI 4-2 CAP		

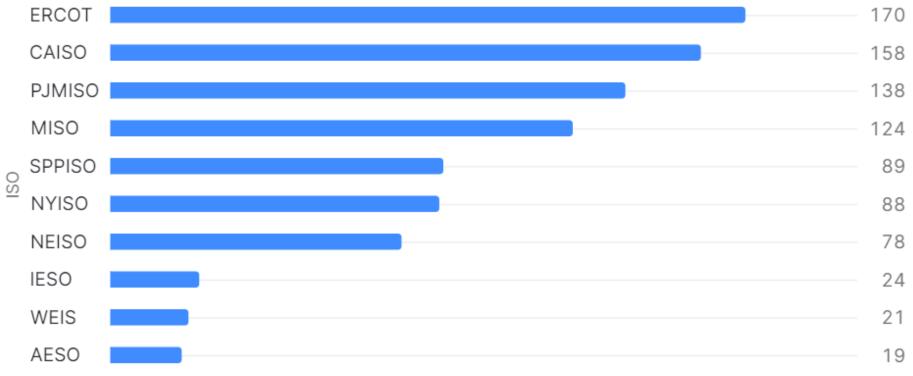

North America's Trusted Power Market Data Provider


YES ENERGY


What Yes Energy does for you

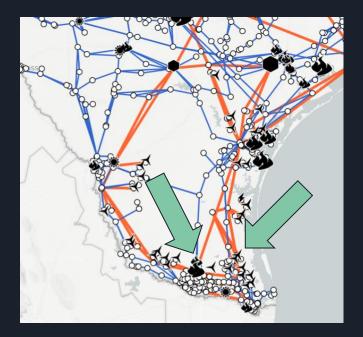


$Data \rightarrow Insight$



Confidential and Proprietary Information of Yes Energy, LLC

Count of unique collection processes by ISO


Count of collection processes

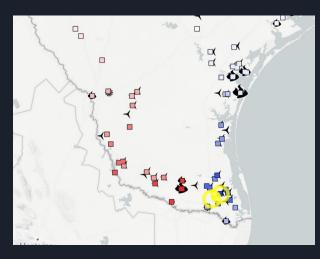
86,400 collection attempts per hour for 15 second data 6 major ISO website changes in 2021

150 hours of data-related support questions a month

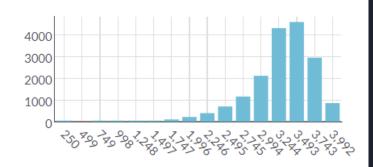
Example 1: An ERCOT Utility Using UI Tools to Make Decisions

The Situation: I'm a utility in South Texas. I manage a wind farm (Breunnings Breeze) and a peaker plant (Red Gate)

It's the morning of 7/7/22, I want to use market data to understand:

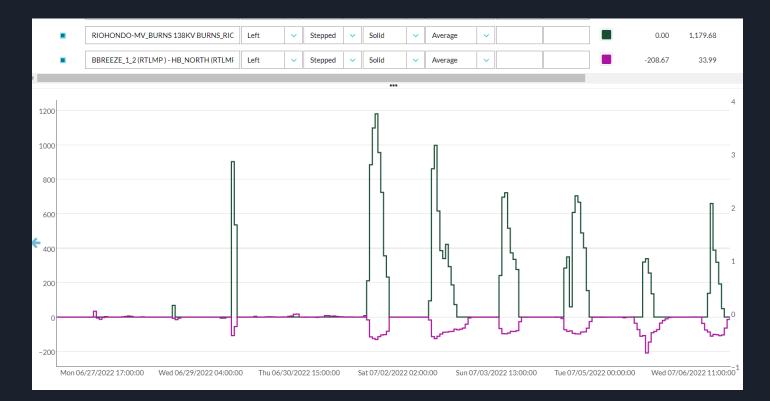

- 1. Why there have been recent negative prices at Breunnings Breeze Wind
- 2. If there is going to be a price spike tomorrow to we can turn on the Red Gate Peaker and take advantage of those prices

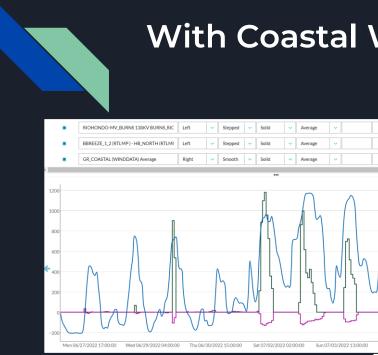
1. Why there have been recent negative prices at Breunnings Breeze Wind



Analyze transmission congestion that has led to price separation, ID those congestion drivers

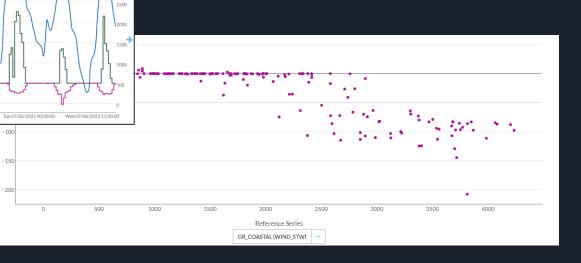
Constraint	From Zone	To Zone	Hrs	% Hrs	Total \$	Avg \$	Max \$	Shift Factor 1 Exposure
RIOHONDO-MV_BURNS 138KV BURNS_RIOH	SOUTH	SOUTH	54.00	37.50	19,571.80	135.92	1,179.68	-14.17
NELRIO	SOUTH	SOUTH	83.00	57.64	1,274.29	8.85	85.41	-8.85
LARDVNTH-LASCRUCE 138KV LARDVN_LASCR	SOUTH	SOUTH	59.00	40.97	11,890.04	82.57	1,034.21	-6.70
PILONCIL-CATARINA 138KV CATARI_PILONC1_1	SOUTH	SOUTH	56.00	38.89	9,033.94	62.74	1,253.27	-3.43




WINDDATA (GR_COASTAL)

North -> BB Congestion Price Spread (Purple) v. Rio Hondo - Burns Shadow Price (Green)

With Coastal Wind Overlayed....


0.00 1,179.68

33.99

3.506.90 1.55

3500

3000

DataSignals

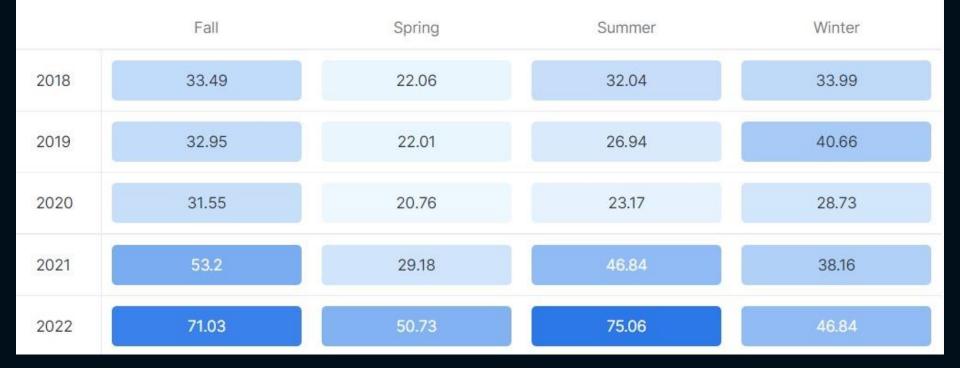
All the power market data you need everywhere you need it

Confidential and Proprietary Information of Yes Energy, LLC

REST API for reporting and automated processing

Amazon S3 files great for internal data warehousing

Cloud SQL database on Snowflake platform (available on AWS, Azure, Google)


Marry Yes Energy data with your own

			<u>data</u>
DATETIME	Load Forecast (MW)	Wind Forecast (MW)	Solar Forecast (MW)
2022-10-13 08:00:00.000	43,055.920166	8,521.9	72.1
2022-10-13 09:00:00.000	43,186.349609	7,151.7	1,899.1
2022-10-13 10:00:00.000	44,388.25	4,529.5	6,808.8
2022-10-13 11:00:00.000	46,304.570129	4,039.8	8,710
2022-10-13 12:00:00.000	48,588.475341	3,478	8,484.1
2022-10-13 13:00:00.000	51,351.949584	2,546.8	7,993.5
2022-10-13 14:00:00.000	53,712.400634	1,990.7	8,150.4
2022-10-13 15:00:00.000	55,970.799438	1,630.2	7,961.6
2022-10-13 16:00:00.000	57,734.731201	2,584.1	7,675.9
2022-10-13 17:00:00.000	58,860.749511	3,491.6	6,838

SCADA	Datetime (minute)
138.5525	2022-10-13 00:00:00.000
73.36	2022-10-13 00:01:00.000
280.8075	2022-10-13 00:02:00.000
365.9275	2022-10-13 00:03:00.000
112.345	2022-10-13 00:04:00.000
78.54	2022-10-13 00:05:00.000
70.37	2022-10-13 00:06:00.000
217.1425	2022-10-13 00:07:00.000
357.7925	2022-10-13 00:08:00.000
582.375	2022-10-13 00:09:00.000

Excellent for historical big data analysis

SP15 Hub Historical Median LMPs (\$/MWh)

